Science with Radio Pulsar Astrometry

Shami Chatterjee

Cornell University

August 2012

Precise astrometry improves the science return from new discoveries.

Precise astrometry improves the science return from new discoveries.

• Astrophysics: Compare apparent L_{γ} with absolute $\dot{E} = I\omega\dot{\omega}$.

→ Emission geometry, luminosity evolution.

Precise astrometry improves the science return from new discoveries.

- Astrophysics: Compare apparent L_γ with absolute $\dot{E} = I \omega \dot{\omega}$.
 - → Emission geometry, luminosity evolution.
- Origins: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.

Precise astrometry improves the science return from new discoveries.

- Astrophysics: Compare apparent L_{γ} with absolute $\dot{E}=I\omega\dot{\omega}$.
 - → Emission geometry, luminosity evolution.
- Origins: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.
- Relativistic winds: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.

Precise astrometry improves the science return from new discoveries.

- Astrophysics: Compare apparent L_{γ} with absolute $\dot{E} = I\omega\dot{\omega}$.
 - → Emission geometry, luminosity evolution.
- Origins: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.
- Relativistic winds: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.
- Gravitational physics: Astrometric parameters for stable recycled pulsars independent of pulse timing.
 - → Shklovskii effect corrections, break timing degeneracies.

Precise astrometry improves the science return from new discoveries.

- Astrophysics: Compare apparent L_{γ} with absolute $\dot{E} = I\omega\dot{\omega}$.
 - → Emission geometry, luminosity evolution.
- Origins: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.
- Relativistic winds: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.
- Gravitational physics: Astrometric parameters for stable recycled pulsars independent of pulse timing.
 - → Shklovskii effect corrections, break timing degeneracies.
- Galactic electron density modeling: improve DM-based distance estimates for entire population.

Precise astrometry improves the science return from new discoveries.

- Astrophysics: Compare apparent L_{γ} with absolute $\dot{E} = I\omega\dot{\omega}$.
 - → Emission geometry, luminosity evolution.
- Origins: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.
- Relativistic winds: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.
- Gravitational physics: Astrometric parameters for stable recycled pulsars independent of pulse timing.
 - → Shklovskii effect corrections, break timing degeneracies.
- Galactic electron density modeling: improve DM-based distance estimates for entire population.
- Other science: velocity distributions, frame ties, NS cooling, etc.

The VLBA: An Astrometry Machine

Talk Outline

- Applying VLB astrometry to pulsar timing:
 Can we improve our sensitivity to gravitational waves?
- Astrophysics: NS mass for PSR J1023+0038.
- Astrometry for Fermi-detected pulsars.
- Previews of coming attractions.

Pulsar Timing Arrays and Gravitational Waves

- Time an array of exceptionally stable pulsars.
- lacktriangle Correlated timing residuals \Rightarrow gravitational waves.
- NanoHz frequencies → multi-year timing campaigns.

• Pulse timing: Noise power absorbed by astrometric fit terms $(\vec{\theta}, \vec{\mu}, \pi)$.

- Pulse timing: Noise power absorbed by astrometric fit terms $(\vec{\theta}, \vec{\mu}, \pi)$.
- → White noise: post-fit residuals similar, but parameters altered.

(Madison et al. 2012)

- Pulse timing: Noise power absorbed by astrometric fit terms $(\vec{\theta}, \vec{\mu}, \pi)$.
- → White noise: post-fit residuals similar, but parameters altered.
- → Red noise: post-fit residuals much lower.

- Pulse timing: Noise power absorbed by astrometric fit terms $(\vec{\theta}, \vec{\mu}, \pi)$.
- → White noise: post-fit residuals similar, but parameters altered.
- → Red noise: post-fit residuals much lower.
- Effects are worse for redder noise.
- Effects worse for shorter data spans; reduced by denser sampling.

If we can pin down astrometric parameters with independent obs,
 the significance of any signal in the residuals should be improved:
 fewer parameters to fit.

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved:
 fewer parameters to fit.
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved:
 fewer parameters to fit.
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved:
 fewer parameters to fit.
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

- If we can pin down astrometric parameters with independent obs,
 the significance of any signal in the residuals should be improved:
 fewer parameters to fit.
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved:
 fewer parameters to fit.
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved:
 fewer parameters to fit.
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved:
 fewer parameters to fit.
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

- If we can pin down astrometric parameters with independent obs,
 the significance of any signal in the residuals should be improved:
 fewer parameters to fit.

 (Madison et al. 2012)
- Transmission function:

(following Blandford, Romani, & Narayan 1984)

Gravitational Waves and Astrometry

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit.
- The path length difference between a pair of pulsars is a search parameter: parallaxes can vastly reduce the search space.

Gravitational Waves and Astrometry

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit.
- The path length difference between a pair of pulsars is a search parameter: parallaxes can vastly reduce the search space.
- Reference frame mismatch between ICRF and DE405 etc: may require an ensemble coordinate offset.
 - ⇒ Conceptually easy, but changes fitting procedure.

Talk Outline

- Applying VLB astrometry to pulsar timing:
 Can we improve our sensitivity to gravitational waves?
- Astrophysics: NS mass for PSR J1023+0038.
- Astrometry for Fermi-detected pulsars.
- Previews of coming attractions.

PSR J1023+0038: an LMXB/MSP transition object

- Optical variability: accretion disk as recently as 2001.
- Radio pulsations: MSP (Archibald et al. 2009)
 - ⇒ Transition object from LMXB to recycled MSP.

PSR J1023+0038: an LMXB/MSP transition object

- Optical variability: accretion disk as recently as 2001.
- Radio pulsations: MSP (Archibald et al. 2009)
 Transition object from LMXB to recycled MSP.
- P = 1.69 ms, Orbit = 4.75 hr.
- Variations in DM and P_{orbit}.
- Frequency dependent eclipses.
- X-ray emission shows orbital modulation.

PSR J1023+0038: VLBA astrometry

VLBA obs, 2008–2010:

- \bullet μ_a = 4.76 ± 0.03 mas/yr
- \bullet μ_d = -17.34 ± 0.04 mas/yr
- $\pi = 0.73 \pm 0.02$ mas

 \Rightarrow D = $1368^{+0.42}_{-0.39}$ pc (Deller et al. 2012)

- Optical observations: companion T ~ 5700 K.
- Photometry: physical size of Roche lobe as function of D.

 $ho \quad D = 2.20 \; (M_c/M_\odot)^{1/3} \; {
m kpc} \; \;$ (Thorstensen & Armstrong 2005).

- Optical observations: companion T ~ 5700 K.
- Photometry: physical size of Roche lobe as function of D.
- ullet $D=2.20~(M_c/M_\odot)^{1/3}~{
 m kpc}~$ (Thorstensen & Armstrong 2005).
- Pulsar timing: Mass ratio $M_{\rm psr}/M_{\rm c} = 7.1 \pm 0.1$.

- Optical observations: companion T ~ 5700 K.
- Photometry: physical size of Roche lobe as function of D.
- ullet $D=2.20~(M_c/M_\odot)^{1/3}~{
 m kpc}~$ (Thorstensen & Armstrong 2005).
- Pulsar timing: Mass ratio $M_{\rm psr}/M_{\rm c} = 7.1 \pm 0.1$.

$$\Rightarrow M_{\rm psr} = (7.1 \pm 0.1) \left(\frac{D}{2.20 \pm 0.02 \rm kpc} \right)^3 M_{\odot}$$

- Optical observations: companion T ~ 5700 K.
- Photometry: physical size of Roche lobe as function of D.
- ullet $D=2.20~(M_c/M_\odot)^{1/3}~{
 m kpc}~$ (Thorstensen & Armstrong 2005).
- Pulsar timing: Mass ratio $M_{\rm psr}/M_{\rm c}=7.1\pm0.1$.

$$\Rightarrow M_{\rm psr} = (7.1 \pm 0.1) \left(\frac{D}{2.20 \pm 0.02 \rm kpc}\right)^3 M_{\odot}$$

• VLBA astrometry: $D = 1368^{+0.42}_{-0.39}$ pc.

$$\Rightarrow$$
 NS Mass = $1.71 \pm 0.16\,M_{\odot}$.

- Optical observations: companion T ~ 5700 K.
- Photometry: physical size of Roche lobe as function of D.
- ullet $D=2.20~(M_c/M_\odot)^{1/3}~{
 m kpc}~$ (Thorstensen & Armstrong 2005).
- Pulsar timing: Mass ratio $M_{\rm psr}/M_{\rm c}=7.1\pm0.1$.

$$\Rightarrow M_{\rm psr} = (7.1 \pm 0.1) \left(\frac{D}{2.20 \pm 0.02 \text{kpc}}\right)^3 M_{\odot}$$

• VLBA astrometry: $D = 1368^{+0.42}_{-0.39}$ pc.

$$\Rightarrow$$
 NS Mass = $1.71 \pm 0.16\,M_{\odot}$.

Roche lobe not filled? If so, lower limit on mass.

Talk Outline

- Applying VLB astrometry to pulsar timing:
 Can we improve our sensitivity to gravitational waves?
- Astrophysics: NS mass for PSR J1023+0038.
- Astrometry for Fermi-detected pulsars.
- Previews of coming attractions.

The Fermi gamma-ray space telescope

- LAT: Imaging high-energy gamma-ray telescope.
- 20 MeV—300 GeV; FoV covers 20% of the sky.
- Continous scanning: whole sky imaged every 3 hours.

Fermi 3-month all-sky image

Fermi 3-month all-sky image

... Many new pulsars, especially recycled ones!

Gamma ray luminosity vs Spindown \dot{E}

• Mass from Shapiro delay = 1.97(4) M_{\odot} (Demorest et al. 2010).

⇒ Rules out most exotic quark matter equations of state.

- Mass from Shapiro delay = 1.97(4) M_{\odot} (Demorest et al. 2010).
- → Highest reliably measured NS mass.
- At D=1.2 kpc, L_{γ} is also $\gtrsim 100\%$ of \dot{E} .
- ... Happenstance? Coincidence?

- Mass from Shapiro delay = 1.97(4) M_{\odot} (Demorest et al. 2010).
- → Highest reliably measured NS mass.
- At D=1.2 kpc, L_{γ} is also $\gtrsim 100\%$ of \dot{E} .
- ... Happenstance? Coincidence?
- ... Or might $\dot{E} = I\omega\dot{\omega}$ be larger than expected?

- Mass from Shapiro delay = 1.97(4) M_{\odot} (Demorest et al. 2010).
- → Highest reliably measured NS mass.
- At D=1.2 kpc, L_{γ} is also $\gtrsim 100\%$ of \dot{E} .
- ... Happenstance? Coincidence?
- ... Or might $\dot{E}=I\omega\dot{\omega}$ be larger than expected?
- ⇒ A precise distance may constrain the NS moment of inertia.

• Fermi/VLBA: A dozen γ -ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.

• Fermi/VLBA: A dozen γ -ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.

• Fermi/VLBA: A dozen γ -ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.

• Fermi/VLBA: A dozen γ -ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.

- Fermi/VLBA: A dozen γ -ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.
- Can we do more? Yes we can! $PSR\pi$: A large VLBA campaign on 280 pulsars!

- Fermi/VLBA: A dozen γ -ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.
- Can we do more? Yes we can!
 PSRπ: A large VLBA campaign on 280 pulsars!
 - 3–5 epochs observed (of 8) on 60 pulsars at 512 Mbps.
 - Preliminary parallaxes down to 10 μ as for best 4.
 - At least 55 of 60 look promising...
 - Can expand sample once 2 Gbps bit rates available at VLBA.

https://safe.nrao.edu/vlba/psrpi/

PSRPi: a preview of coming attractions

PSRPi: more coming attractions

A distance measuring service

Is **YOUR** Neutron Star:

- ★ A radio emitter?
- ★ Brighter than ~1 mJy?
- ★ Closer than ~8 kpc?
- ★ North of -25 in Dec?

Measure a parallax* with the VLBA!

*Certain conditions, exclusions, and limitations apply. Please talk to the presenter or consult your friendly local expert about why the VLBA may be right for YOU!

A distance measuring service

*Certain conditions, exclusions, and limitations apply. Please talk to the presenter or consult your friendly local expert about why the VLBA may be right for YOU!

Collaborators and Acknowledgements

VLBA astrometry collaboration:

Adam Deller, Walter Brisken, Joseph Lazio, James Cordes, Miller Goss, et al.

https://safe.nrao.edu/vlba/psrpi/

Fermi pulsar collaboration:

Scott Ransom, Fernando Camilo, Paul Ray, Michael Kramer, Lucas Guillemot, Maura McLaughlin, David Smith, Agnes Fienga, Gilles Theureau, Roger Romani, David Thompson, et al.

NANOGrav: http://nanograv.org/