Science with Radio Pulsar Astrometry

Shami Chatterjee
Cornell University

August 2012
Astrometry is a force multiplier

Precise astrometry improves the science return from new discoveries.
Astrometry is a force multiplier

Precise astrometry improves the science return from new discoveries.

- **Astrophysics**: Compare apparent L_γ with absolute $\dot{E} = I\dot{\omega}\dot{\omega}$.
 → Emission geometry, luminosity evolution.
Astrometry is a force multiplier

Precise astrometry improves the science return from new discoveries.

- **Astrophysics**: Compare apparent L_γ with absolute $\dot{E} = I\omega\dot{\omega}$. → Emission geometry, luminosity evolution.

- **Origins**: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.
Astrometry is a force multiplier

Precise astrometry improves the science return from new discoveries.

- **Astrophysics**: Compare apparent L_γ with absolute $\dot{E} = I\omega\dot{\omega}$.
 → Emission geometry, luminosity evolution.

- **Origins**: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.

- **Relativistic winds**: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.
Astrometry is a force multiplier

Precise astrometry improves the science return from new discoveries.

- **Astrophysics**: Compare apparent L_γ with absolute $\dot{E} = I \omega \dot{\omega}$.
 → Emission geometry, luminosity evolution.

- **Origins**: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.

- **Relativistic winds**: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.

- **Gravitational physics**: Astrometric parameters for stable recycled pulsars independent of pulse timing.
 → Shklovskii effect corrections, break timing degeneracies.
Astrometry is a force multiplier

Precise astrometry improves the science return from new discoveries.

- **Astrophysics**: Compare apparent L_γ with absolute $\dot{E} = I\omega \dot{\omega}$.
 → Emission geometry, luminosity evolution.

- **Origins**: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.

- **Relativistic winds**: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.

- **Gravitational physics**: Astrometric parameters for stable recycled pulsars independent of pulse timing.
 → Shklovskii effect corrections, break timing degeneracies.

- **Galactic electron density modeling**: improve DM-based distance estimates for entire population.
Astrometry is a force multiplier

Precise astrometry improves the science return from new discoveries.

- **Astrophysics**: Compare apparent L_γ with absolute $\dot{E} = I\omega \dot{\omega}$. → Emission geometry, luminosity evolution.
- **Origins**: Use μ and τ to trace path back to birth sites and associations with massive star clusters, SNRs.
- **Relativistic winds**: Calibrate energetics of PWNe, probe interaction with ISM and bulk flows.
- **Gravitational physics**: Astrometric parameters for stable recycled pulsars independent of pulse timing. → Shklovskii effect corrections, break timing degeneracies.
- **Galactic electron density modeling**: improve DM-based distance estimates for entire population.
- **Other science**: velocity distributions, frame ties, NS cooling, etc.
The VLBA: An Astrometry Machine
Talk Outline

- **Applying VLB astrometry to pulsar timing:** Can we improve our sensitivity to gravitational waves?
- Astrophysics: NS mass for PSR J1023+0038.
- Astrometry for Fermi-detected pulsars.
- Previews of coming attractions.
Pulsar Timing Arrays and Gravitational Waves

- Time an array of exceptionally stable pulsars.
- Correlated timing residuals \Rightarrow gravitational waves.
- NanoHz frequencies \rightarrow multi-year timing campaigns.
Noise-induced errors in astrometry

- Pulse timing: Noise power absorbed by astrometric fit terms ($\vec{\theta}$, $\vec{\mu}$, π).
Noise-induced errors in astrometry

- Pulse timing: Noise power absorbed by astrometric fit terms ($\tilde{\theta}$, $\tilde{\mu}$, π).
- White noise: post-fit residuals similar, but parameters altered.

(Madison et al. 2012)
Noise-induced errors in astrometry

- Pulse timing: Noise power absorbed by astrometric fit terms ($\tilde{\theta}$, $\tilde{\mu}$, π).
 - White noise: post-fit residuals similar, but parameters altered.
 - Red noise: post-fit residuals much lower.

(Madison et al. 2012)
Noise-induced errors in astrometry

- Pulse timing: Noise power absorbed by astrometric fit terms ($\vec{\theta}$, $\vec{\mu}$, π).
 - White noise: post-fit residuals similar, but parameters altered.
 - Red noise: post-fit residuals much lower.
- Effects are worse for redder noise.
- Effects worse for shorter data spans; reduced by denser sampling.
If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit. (Madison et al. 2012)
If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit. (Madison et al. 2012)

Transmission function: (following Blandford, Romani, & Narayan 1984)
If we can pin down astrometric parameters with independent observations, the significance of any signal in the residuals should be improved: fewer parameters to fit. (Madison et al. 2012)

Transmission function: (following Blandford, Romani, & Narayan 1984)
If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit. (Madison et al. 2012)

Transmission function: (following Blandford, Romani, & Narayan 1984)
Pulse Timing and Astrometry

- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: **fewer parameters to fit.** (Madison et al. 2012)
- Transmission function: (following Blandford, Romani, & Narayan 1984)
• If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit. (Madison et al. 2012)

• Transmission function: (following Blandford, Romani, & Narayan 1984)
If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: **fewer parameters to fit.** (Madison et al. 2012)

Transmission function: (following Blandford, Romani, & Narayan 1984)
If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit. (Madison et al. 2012)

Transmission function: (following Blandford, Romani, & Narayan 1984)
If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit. (Madison et al. 2012)

Transmission function: (following Blandford, Romani, & Narayan 1984)
If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit.

The path length difference between a pair of pulsars is a search parameter: parallaxes can vastly reduce the search space.
- If we can pin down astrometric parameters with independent obs, the significance of any signal in the residuals should be improved: fewer parameters to fit.

- The path length difference between a pair of pulsars is a search parameter: parallaxes can vastly reduce the search space.

- Reference frame mismatch between ICRF and DE405 etc: may require an ensemble coordinate offset.
 ⇒ Conceptually easy, but changes fitting procedure.
Applying VLB astrometry to pulsar timing: Can we improve our sensitivity to gravitational waves?

Astrophysics: NS mass for PSR J1023+0038.

Astrometry for Fermi-detected pulsars.

Previews of coming attractions.
PSR J1023+0038: an LMXB/MSP transition object

- Optical variability: accretion disk as recently as 2001.
- Radio pulsations: MSP (Archibald et al. 2009)

⇒ Transition object from LMXB to recycled MSP.
PSR J1023+0038: an LMXB/MSP transition object

- Optical variability: accretion disk as recently as 2001.
- Radio pulsations: MSP (Archibald et al. 2009)
 \[\Rightarrow\] Transition object from LMXB to recycled MSP.
- \(P = 1.69\) ms, Orbit = 4.75 hr.
- Variations in DM and \(P_{\text{orbit}}\).
- Frequency dependent eclipses.
- X-ray emission shows orbital modulation.
PSR J1023+0038: VLBA astrometry

VLBA obs, 2008–2010:

- $\mu_a = 4.76 \pm 0.03 \text{ mas/yr}$
- $\mu_d = -17.34 \pm 0.04 \text{ mas/yr}$
- $\pi = 0.73 \pm 0.02 \text{ mas}$

$\Rightarrow D = 1368^{+0.42}_{-0.39} \text{ pc}$

(Deller et al. 2012)
- Optical observations: companion $T \sim 5700$ K.
- Photometry: physical size of Roche lobe as function of D.

$$D = 2.20 \left(\frac{M_c}{M_\odot} \right)^{1/3} \text{kpc} \quad \text{(Thorstensen & Armstrong 2005).}$$
Optical observations: companion $T \sim 5700$ K.

Photometry: physical size of Roche lobe as function of D.

$D = 2.20 \left(\frac{M_c}{M_\odot}\right)^{1/3}$ kpc \hspace{1em} (Thorstensen & Armstrong 2005).

Pulsar timing: Mass ratio $M_{\text{psr}}/M_c = 7.1 \pm 0.1$.
PSR J1023+0038: NS mass estimate

- Optical observations: companion T \(\sim 5700 \) K.
- Photometry: physical size of Roche lobe as function of D.
- \(D = 2.20 \left(\frac{M_c}{M_\odot} \right)^{1/3} \) kpc (Thorstensen & Armstrong 2005).
- Pulsar timing: Mass ratio \(M_{\text{psr}}/M_c = 7.1 \pm 0.1 \).

\[\Rightarrow M_{\text{psr}} = (7.1 \pm 0.1) \left(\frac{D}{2.20 \pm 0.02 \text{kpc}} \right)^3 M_\odot \]
PSR J1023+0038: NS mass estimate

- Optical observations: companion T ∼ 5700 K.
- Photometry: physical size of Roche lobe as function of D.

\[D = 2.20 \left(\frac{M_c}{M_\odot} \right)^{1/3} \text{kpc} \quad \text{(Thorstensen & Armstrong 2005).} \]

- Pulsar timing: Mass ratio \(M_{\text{psr}}/M_c = 7.1 \pm 0.1. \)

\[\Rightarrow M_{\text{psr}} = (7.1 \pm 0.1) \left(\frac{D}{2.20 \pm 0.02 \text{kpc}} \right)^3 \text{M}_\odot \]

- VLBA astrometry: \(D = 1368^{+0.42}_{-0.39} \text{ pc}. \)

\[\Rightarrow \text{NS Mass} = 1.71 \pm 0.16 \text{M}_\odot. \]
PSR J1023+0038: NS mass estimate

- Optical observations: companion $T \sim 5700$ K.
- Photometry: physical size of Roche lobe as function of D.
 \[D = 2.20 \left(\frac{M_c}{M_\odot} \right)^{1/3} \text{kpc} \]
 (Thorstensen & Armstrong 2005).
- Pulsar timing: Mass ratio $M_{\text{psr}}/M_c = 7.1 \pm 0.1$.
 \[\Rightarrow M_{\text{psr}} = (7.1 \pm 0.1) \left(\frac{D}{2.20 \pm 0.02 \text{kpc}} \right)^3 M_\odot \]
- VLBA astrometry: $D = 1368^{+0.42}_{-0.39} \text{ pc}$.
 \[\Rightarrow \text{NS Mass} = 1.71 \pm 0.16 M_\odot. \]
- Roche lobe not filled? If so, lower limit on mass.
Talk Outline

- Applying VLB astrometry to pulsar timing: Can we improve our sensitivity to gravitational waves?
- Astrophysics: NS mass for PSR J1023+0038.
- Astrometry for Fermi-detected pulsars.
- Previews of coming attractions.
The Fermi gamma-ray space telescope

- LAT: Imaging high-energy gamma-ray telescope.
- 20 MeV—300 GeV; FoV covers 20% of the sky.
- Continuous scanning: whole sky imaged every 3 hours.
Fermi 3-month all-sky image

Note: Crab, Vela, Geminga, J1836+5925, and “Unidentified”…

Credit: NASA/DOE/Fermi LAT Collaboration
Fermi 3-month all-sky image

Note: Crab, Vela, Geminga, J1836+5925, and “Unidentified”...

... Many new pulsars, especially recycled ones!
Gamma ray luminosity vs Spindown \dot{E}

Suggestive? But distance uncertainty limits usefulness...
Case study: PSR J1614–2230

- Mass from Shapiro delay = 1.97(4) M_\odot (Demorest et al. 2010).

\Rightarrow Rules out most exotic quark matter equations of state.
Case study: PSR J1614–2230

- Mass from Shapiro delay = 1.97(4) \(M_\odot \) (Demorest et al. 2010). → Highest reliably measured NS mass.

- At \(D=1.2 \) kpc, \(L_\gamma \) is also \(\gtrsim 100\% \) of \(\dot{E} \).

... Happenstance? Coincidence?
Case study: PSR J1614–2230

- Mass from Shapiro delay = 1.97(4) M_\odot (Demorest et al. 2010). → Highest reliably measured NS mass.

- At $D=1.2$ kpc, L_γ is also $\gtrsim 100\%$ of \dot{E}.

... Happenstance? Coincidence?

... Or might $\dot{E} = I\omega\dot{\omega}$ be larger than expected?
Case study: PSR J1614–2230

- Mass from Shapiro delay = 1.97(4) M_\odot (Demorest et al. 2010).
 \rightarrow Highest reliably measured NS mass.

- At $D=1.2$ kpc, L_γ is also $\gtrsim 100\%$ of \dot{E}.

 ... Happenstance? Coincidence?
 ... Or might $\dot{E} = I\dot{\omega}$ be larger than expected?

\Rightarrow A precise distance may constrain the NS moment of inertia.
Ongoing astrometry programs

- **Fermi/VLBA**: A dozen γ-ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.
Ongoing astrometry programs

- **Fermi/VLBA**: A dozen γ-ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.
Ongoing astrometry programs

- **Fermi/VLBA**: A dozen γ-ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.
Ongoing astrometry programs

- **Fermi/VLBA**: A dozen γ-ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.
Ongoing astrometry programs

- **Fermi/VLBA**: A dozen γ-ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.

- Can we do more? Yes we can!
 - **PSRπ**: A large VLBA campaign on 280 pulsars!
Ongoing astrometry programs

- **Fermi/VLBA**: A dozen γ-ray selected pulsars being followed. e.g., PSR J0751+1807: 4 epochs observed.

- Can we do more? Yes we can!
 - **PSRπ**: A large VLBA campaign on 280 pulsars!
 - 3–5 epochs observed (of 8) on 60 pulsars at 512 Mbps.
 - Preliminary parallaxes down to 10 μas for best 4.
 - At least 55 of 60 look promising...
 - Can expand sample once 2 Gbps bit rates available at VLBA.

https://safe.nrao.edu/vlba/psrpi/
PSRPi: a preview of coming attractions
PSRPi: more coming attractions
Is YOUR Neutron Star:

★ A radio emitter?
★ Brighter than ~1 mJy?
★ Closer than ~8 kpc?
★ North of -25 in Dec?

Measure a parallax* with the VLBA!

*Certain conditions, exclusions, and limitations apply. Please talk to the presenter or consult your friendly local expert about why the VLBA may be right for YOU!
A distance measuring service

Is YOUR Neutron Star:
★ A radio emitter?
★ Brighter than ~1 mJy?
★ Closer than ~8 kpc?
★ North of ~25 in Dec?

... Limited Time Offer ...

Measure a parallax* with the VLBA!

*Certain conditions, exclusions, and limitations apply. Please talk to the presenter or consult your friendly local expert about why the VLBA may be right for YOU!
Collaborators and Acknowledgements

VLBA astrometry collaboration:

https://safe.nrao.edu/vlba/psrpi/

Fermi pulsar collaboration:
Scott Ransom, Fernando Camilo, Paul Ray, Michael Kramer, Lucas Guillemot, Maura McLaughlin, David Smith, Agnes Fienga, Gilles Theureau, Roger Romani, David Thompson, et al.

NANOGrav: http://nanograv.org/