Resistivity and Dissipation in Pulsar Magnetospheres

Jason Li Princeton University

Collaborators: Anatoly Spitkovsky, Alexander Tchekhovskoy

Overview

- Pulsars provide a unique laboratory to study plasma processes, dissipation, in high magnetic field environments
- 3 classes of pulsar solutions
 - Vacuum (no plasma in magnetosphere)
 - Force-free (abundant ideal plasma everywhere)
 - Resistive (solutions that combine plasma and accelerating fields)
- Applications of resistive solutions to intermittent pulsars, gamma ray pulsars

Non-ideal nature of Pulsar Magnetospheres

- We expect bulk of magnetosphere to have abundant ideal plasma due to pair cascade, but need accelerating electric fields to get high-energy radiation
- Finite E_{\parallel} can arise in "gap" regions due to variations in plasma supply and insufficient shorting of electric fields, or in reconnecting current sheets
- E_{\parallel} drives current and gives rise to resistivity, we specify $j_{fluid} = \sigma E_{fluid}$

Lab frame:

$$\vec{j} = \frac{\rho c \vec{E} \times \vec{B} + \sqrt{\frac{B^2 + E_0^2}{B_0^2 + E_0^2}} \sigma E_0 (B_0 \vec{B} + E_0 \vec{E})}{B^2 + E_0^2}$$

$$= \frac{B^2 + E_0^2}{B_0^{8/24/2012}} = \frac{B_0^2 + E_0^2}{B_0^{8/24/2012}} = \frac{B_0^2 + E_0^2}{B_0^2 + E_0^2} = \frac{B_0^2 + E_0^2}{B_0^2 + E_0^2}$$

Pulsar electrodynamics

 We use a Finite Difference Time Domain Method to solve Maxwells equations with our resistive current closure

$$\partial_t \vec{E} = c \vec{\nabla} \times \vec{B} - 4\pi \vec{j}, \qquad \vec{j} = \rho \vec{v} + \sigma \vec{E}_{\text{fluid}}$$

$$\partial_t \vec{B} = -c \vec{\nabla} \times \vec{E}, \qquad \vec{v} = c(\vec{E} \times \vec{B})/(B^2 + E_0^2)$$

$$\vec{E}_{\text{fluid}} = \gamma(\vec{E} + \vec{v} \times \vec{B})$$

- Problem: conducting neutron star with dipole field immersed in resistive plasma
- Method applicable to magnetically dominated systems in which plasma pressure and inertia are negligible
- Main application here to pulsar magnetospheres
- Potential applications to black hole magnetospheres, stellar and disk coronas, binaries, NS collapse

Resistive Pulsars

 Movie of field lines and current sheet for 60 degree inclined resistive pulsar solution with high but finite conductivity at:

http://www.astro.princeton.edu/~jgli/rotator.mpeg

Force-free and high conductivity similar

Smooth transition to vacuum

Spin-down

- Magnetodipole radiation
- Conduction currents add to energy loss: W=IV
- Spin-down increases with conductivity
- What values of σ are observationally motivated?

ApJ 746, 60

How do real pulsars spin down? A look at Intermittent pulsars

- Switch between two distinct spin-down states
- Spin-down rates
 differ by factor of
 ~1.5-2.5
 PSR B1931+24
 PSR J1832+0029
 PSR J1841-0500
- "on" radio-loud state and "off" radioquiet state

Why do Intermittent pulsars turn "on" and "off"?

- Switching suggests (Kramer et al. '06) some process is affecting plasma supply, giving us direct handle on plasma currents
- We construct quantitative model
 - "on" state is force-free with abundant plasma everywhere
 - In "off" state plasma supply on open field lines has been disrupted, but plasma remains trapped in closed zone

Implications for Spin-down

 $L_{ff}/L_{vac} = 3/2(1 + \sin^2(\alpha))/\sin^2(\alpha) \ge 3$ cannot explain intermittent pulsars

• Open field lines carry Poynting flux, so the larger fraction of open field lines in "off" state leads to spin-down factor of 2 higher than vacuum

- Missing physics is toroidal advection of plasma in closed zone
- Uncertainties in "off" state spin-down ~ 10% of aligned force-free spin-down
- The spin-down ratio is broadly consistent with observations
- Intermittency may be related to nulling (also timing noise, rotating radio transients)

Gamma-ray pulsars

- Fermi LAT has discovered >100 Gamma-ray pulsars, many with double peaked light curves
- Main question: in what direction do gamma-ray emitting particles fly and beam?
- Reconnection heating in current sheets may be able to produce gamma ray emission (Bai & Spitkovsky '10, Petri '12, Petri & Kirk '05, Arka '12)
- MegaGauss B fields near light cylinder can produce comoving T ~
 100 MeV, boosted to GeV emission with modest γ ~ 10

Magnetic fields extrapolated to center of sheet, particles assumed to remember their trajectory from before entering sheet

Gamma-ray pulsars

- Reconnection microphysics may modify particle momenta
- Advantage of our resistive force-free method is that we can spatially resolve current sheet (unlike in ideal force-free)
- Beam along E_{\parallel} ? Inwards streaming species won't give strong caustics and double-peaked light curves
- Should consider Lorentz force and relativistic dynamics?

 Jason Li

Conclusions

- We have formulated a resistive force-free prescription to model plasma processes in pulsar magnetospheres
- More realistic physics opens new avenues of research:
 - We have produced quantitative models of intermittent pulsars
 - Resistivity naturally allows us to study high-energy emission from Gamma-ray pulsars

Open Questions

- What regulates plasma supply in pulsar magnetospheres?
- The importance of current sheet reconnection microphysics?
 - Localized reconnection in x-points may eject plasma relativistically in plasmoids
 - Particle In Cell simulation of current sheet structure would address momentum transfer to particles