The Galactic Millisecond Pulsar Population

Duncan Lorimer
(WVU/NRAO)

Goal: to understand the birth, life and death of neutron stars in as many environments as possible

- Radio pulsars as probes
 - The current sample and some of the surveys
 - Selection effects and modeling techniques
 - Older results concerning normal pulsars
- The millisecond pulsar population
 - New analysis with “old” Parkes multibeam surveys
- Open questions
The radio pulsar tally (N>2000)

Key developments

- Low-noise receivers
- Multibeam systems
- Data acquisition systems
- High performance computing
- Interference excision
- Multiple analyses
Parkes multibeam surveys (pre-HTRU)

- **Galactic plane survey** → 800+ new pulsars
 Manchester et al. 2001

- **High latitude survey** → Double pulsar
 Burgay et al. 2006

- **Perseus arm surveys** → Outer galaxy
 Burgay et al. 2012

- **Swinburne intermediate latitude** → Recycled
 Edwards et al. 2001

- **Swinburne high latitude** → 1909-3744
 Jacoby et al. 2009

- **Magellanic Cloud surveys** → 20+ pulsars
 Manchester et al. 2006
Pulsar sample is heavily biased

\[S = \frac{L}{4\pi d^2} \]

\(S \rightarrow \) Flux density
\(L \rightarrow \) Luminosity
\(d \rightarrow \) Distance
Monte Carlo approach to problem

Rotation Curve

Neutron star properties...
\(V_0, P(t), B(t), L(t) \)

The Galaxy

Interstellar medium model

Pulsar surveys \(\rightarrow S_{\text{min}} \)

Model sample \(\rightarrow \) True sample
"Snapshot model" results

Lorimer et al. 2006

http://psrpop.phys.wvu.edu
“Time evolution” model results

- Random luminosities don’t produce good results. Need $L = f(P, P_{dot})$
- Final distribution appears to be log-normal

Faucher-Giguere & Kaspi 2006
Ridley & Lorimer 2010
Landmark papers in MSP statistics

- Sample of three MSPs → Birthrate problem!
 Kulkarni & Narayan 1988
- High latitude surveys → Isotropic population
 Johnston & Bailes 1991
- Evolutionary simulations → P-Pdot distributions
 Rathnasree 1993
- Spindown studies → Ages, spin-up lines
 Camilo et al. 1994
- Parkes/Arecibo 70cm surveys → Local population
 Lorimer 1995
- Likelihood analyses → Population distributions
 Cordes & Chernoff 1997
The Galactic MSP tally

http://astro.phys.wvu.edu/GalacticMSPs

2001 → 33 sources

2012 → 175+(23?) sources

Galactic MSPs currently outnumber their counterparts in globular clusters!
Still finding MSPs in PMPS! (#26 confirmed yesterday)

The Galactic MSP population

Results from pre-HTRU surveys (based on a sample of 57 MSPs)

“Standard model” has:

• ~32,000 potentially observable MSPs
• Period distribution peaking at ~5ms
• Log-normal luminosity function
• 500 pc scale height (exponential)
• 7.5 kpc scale length (Gaussian)
A plethora of population models

<table>
<thead>
<tr>
<th>Model</th>
<th>Modifications</th>
<th>log(QKS)</th>
<th>RChi-sq</th>
<th>N_{Galaxy}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>None</td>
<td>-2.3</td>
<td>0.7</td>
<td>31,700</td>
</tr>
<tr>
<td>B</td>
<td>Fainter</td>
<td>-2.1</td>
<td>1.3</td>
<td>36,000</td>
</tr>
<tr>
<td>C</td>
<td>Uniform disk</td>
<td>-7.1</td>
<td>2.8</td>
<td>2,670</td>
</tr>
<tr>
<td>D</td>
<td>CC97-pdist</td>
<td>-12.8</td>
<td>1.1</td>
<td>43,700</td>
</tr>
<tr>
<td>E</td>
<td>100pc z-scale</td>
<td>-4.9</td>
<td>8.1</td>
<td>21,000</td>
</tr>
<tr>
<td>F</td>
<td>1 kpc z-scale</td>
<td>-3.1</td>
<td>1.3</td>
<td>40,800</td>
</tr>
<tr>
<td>G</td>
<td>6.5kpc R-scale</td>
<td>-2.6</td>
<td>0.5</td>
<td>30,800</td>
</tr>
<tr>
<td>H</td>
<td>8.5kpc R-scale</td>
<td>-3.4</td>
<td>0.9</td>
<td>31,800</td>
</tr>
<tr>
<td>I</td>
<td>Gaussian pdist</td>
<td>-6.0</td>
<td>0.4</td>
<td>28,700</td>
</tr>
</tbody>
</table>

Strategy: Investigate impacts of changes to “optimal model” → better understand uncertainties
Model E - 100 pc scale height
Model D - cc97 period distrib.
Model C - uniform disk

Pulsar survey

Number of detections

PM PH PA SI SH

DM (pc/cc)

Period (ms)

Galactic latitude (degrees)

Galactic longitude (degrees)
Model A – current best effort
Some open questions

• In general, what about:
 – magnetic field decay?
 – intermittency?
 – Scintillation?

• For MSPs, what about:
 – Binary evolution
 • Synthesis code + Selection effects
 – Binary subclasses
 – Fraction isolated (~20% observed)
 – Modeling Fermi sample and other surveys