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Introduction and Motivation

The analysis of very compact astrophysical objects has been a key issue in relativistic
astrophysics for the last few decades.

The estimated masses and radii of many compact objects such as X-ray pulsar Her X-1,
X-ray burster 4U 1820-30, millisecond pulsar SAX J 1808.4-3658, X-ray sources 4U
1728-34, PSR 0943+10 and RX J185635-3754 are not compatible with the standard
neutron star models.

A strange quark matter may be useful to understand the observed physical features of
some of these compact objects [1,2,3,4,5].

The matter densities of these compact objects are normally above the nuclear matter
density. It has both maximum mass and radius less than those for neutron stars, with
higher compactification factor (ratio of mass to radius).

It is physically realistic to consider an ultra-compact star with two different pressures
inside [6], namely, the radial pressure and the tangential pressure incorporating the
anisotropy.

It is considered [7,8,9] that compact stars may be made up of quark matter which may
be formed in two different ways :

(i) quark-hadron phase transition in the early universe, and
(ii) conversion of neutron star into strange star ones at ultrahigh densities.

The theories of strong interaction with quark bag model, strange quark matter may be
useful in order to obtain a relevant equation of state (EOS).

Here we assume that the quarks are mass less and non-interacting giving the quark
pressure

where is the quark energy density.

The total energy density
and the total pressure , where B is Bag constant.

The equation of state (EOS) for the strange quark matter [10] is given by:

In the MIT Bag model [11] and in the original version of fuzzy Bag model the non-
perterbative QCD vacuum is parameterized by a constant B in the Lagrangian density.

For these stars quark confinement is important which is described by the energy term
proportional to the volume[12] .

In this model, the constituent quark matter is considered to be mass less u, d quarks and
massive quarks and electrons. The quarks are considered to be degenerate Fermi gases,
which may exist only in a region of space with a vacuum energy density B (called the
Bag constant).

In this work, we have investigated the role of pressure anisotropy of a compact star
relating it with the value of Bag parameter in the framework of Vaidy-Tikekar model
for super dense star [13,14].

In this approach the model of a super dense star is obtained by stipulating a law for
variation of density of its matter content which follows from prescribing a geometry
characterized by two curvature parameters for the physical space of the configuration
which is a departure from the spherical geometry of a uniform density configuration.

The equation of state of matter content follows from the system of associated Einstein
field equations which in a number of specific cases is found to approximate to linear
EOS connecting pressure and density [12].
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General Solution

The general solution of eq. (11) [20] is given below in two cases

Case-I : In this case the value of and are such that
is positive and the solution is

......12(a)

Case-II : In this case the value of and are such that
is positive and the solution is

...... 12(b)

Where C and D are two constants to be determined from boundary condition and
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3(b). Applying scaling properties to the above configuration with scaling factor = 0.65
Mass M = 0.85995 , where is the Solar mass

Radius b = 4.2575Km. and the parameter ‘a’=6, which leads to Compactness u =
0.2979 and R= 6.58373Km.

In Isotropic case, 20.3702Mev/fm^3 and

At the surface 387.06Mev/fm^3

Variations of parameter with
Variations of parameter ‘B’ with radial distant
‘r’ for different values of anisotropy parameter
Here ‘u’ = 0.2979 and ‘a’ = 6. Lines from top to
bottom are for = , , , , .0 0.01 0.02 0.03 0.04
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3(a). SAX J1 millisecond pulsar [16,20]
Mass M = 1.323 , where is the Solar mass

Radius b = 6.55Km. and the parameter ‘a’=6, which leads to Compactness u =
0.2979 and R= 10.1288Km.

In Isotropic case, 8.60342Mev/fm^3 and

At the surface 163.533Mev/fm^3

Variations of parameter with
Variations of parameter ‘B’ with radial distant
‘r’ for different values of anisotropy parameter
Here ‘u’ = 0.2979 and ‘a’ = 6. Lines from top to
bottom are for = , , , , .0 0.02 0.04 0.06 0.08, 0.1
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Physical Parameters

The physical parameters of a general relativistic star are given by

Eqs. (8) and (12) with equations. (13) - (15) comprise a set of equations relevant for determining
the physical parameters exactly.

The total mass of a star of radius ‘b’ is given by

The Compactness factor ‘u’ (the ratio of mass to radius) is given by

Where

The parameter ‘B’ may now be evaluated employing equations. (1), (13) and (14), which is
given by

Where ‘B’is in the unit of MeV/fm^3, obtained by scaling in

terms of a factor [18], here ‘R’is a constant parameter [10].

In the case of a compact star, we impose the following conditions:

1. At the boundary of the star the interior solution is matched with the Schwarzschild exterior
solution, i.e.,

2. At the boundary of the star the radial pressure should vanish, which yields,

, where

From eq. (12) we get

Now using equations. (19), (20) and (21) we determine the constants C and D

3. The pressure inside the star, which leads to an inequality, is given by
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Physical Application
To study the effect of anisotropy of a compact star on the parameter ‘B’, we first use the eq. (19) to
determine ‘R’, which can be evaluated for a given values ‘a’, ‘M’and ‘b’.

Once the constants C, D and the parameter ‘R’ is known, the value of ‘B’ can be evaluated
using eq. (22) for different values of anisotropy parameter .

Thus ‘B’ can be studied as a function of ‘r’ for different values of . ‘B’ is also determined
from eq. (17) for a given and ‘a’.
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We study the interior of a compact star in two distinguished regions
(i) near the center of the star and
(ii) away from the center up to the surface.

Three different cases we have studied.

Numerical and Graphical result

Let us consider SAX J with two possible models of compactness [16,20]

Mass M = 1.435 , where is the Solar mass
Radius b = 7.07Km. and the parameter ‘a’=53.34, Which leads to Compactness
u = 0.2994 and R= 41.2695Km.

In Isotropic case, -17.9387Mev/fm^3 and

At the surface 159.8817Mev/fm^3

Variations of parameter with
Variations of parameter ‘B’ with radial distant
‘r’ for different values of anisotropy parameter
Here ‘u’ = 0.2979 and ‘a’ = 53.34. Lines from top to
bottom are for = , , , ,0 0.1 0.15 0.202 0.25, 0.3, 0.35

2(a). SAX J1 millisecond pulsar [16,20]
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2(b). Applying scaling properties to the above configuration with scaling factor = 0.75
Mass M = 1.07625 , where is the Solar mass
Radius b = 5.3025Km. and let the parameter ‘a’=20, which leads to same compactness

u= 0.2994 and different value of parameter R= 18.1622Km.

In Isotropic case, -28.1011Mev/fm^3 and

At the surface 277.822Mev/fm^3

Variations of parameter with
Variations of parameter ‘B’ with radial distant
‘r’ for different values of anisotropy parameter
Here ‘u’ = 0.2994 and ‘a’ = 20. Lines from top to
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Conclusion

*

*

*

*

*

*

Physically viable relativistic models of a compact star having anisotropic matter content
with strange-matter EOS , can be obtained by following the procedure
suggested by Mukherjee et al [12].

In this model parameter ‘B’acquired a radial dependence.

At the centre of the star Parameter ‘B’increases linearly with anisotropy parameter for
Given compactness and spheroidicity parameter.

At the surface of the star there is practically no effect of anisotropy on the value of
parameter ‘B’.

For specific configuration of the compact object, Parameter picks up negative value,
indicating the repulsive nature of core region for such configuration.

Scaling properties also hold good for the model under consideration.
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Einstein Fields Equation

The space time in the interior of a spherically symmetric,cold compact star in
equilibrium is described by

Where and are the two unknown metric functions.

The interior matter content of the star is prescribed to be that of a fluid with anisotropic
pressures with the energy momentum tensor

where is the energy-density, is the radial pressure, is the tangential
pressure and is the measure of pressure anisotropy [13,15,16,17,18] in this
model, which depends on metric potential and .
The Einstein field equation

where is Ricci tensor and is the Ricci scalar. The Einstein field equation
relates the metric parameters and of the space time with the dynamical
variables of its physical content which reduces to the following system of three
equations :

Where we have used .

The geometry of a more realistic star with variable matter density is expected to be
departure from 3-spherical geometry. The Vaidya - Tikekar models are obtained by
prescribing[ 14,19]

where ‘a’ and ‘R’ are two different parameters, ‘a’ being the spheroidicity parameter
and ‘R’ is expressed in Km. The geometry of the physical 3-space of the star is that of a
3-Pseudo spheroid and the parameter ‘a’is related with the eccentricity of the 3-Pseudo
spheroid.

In view of the field equation (5) this is equivalent to prescribing the law for variation of
matter density at the centre of the star for the physical content of the star

The variation of is governed by two parameters ‘a’ and ‘R’. The matter density has
maximum value at the center from which it decreases radialy outward.

Equations (6) and (7) determine the pressures along radial and transverse directions
in terms of and these parameters at all points of the star.

If the nature of anisotropy is known these termine the metric variable .

Now using equations (6) and (7), ones obtains a second order differential equation
in ‘x’

------(10)

Where with

For simplicity we choose the anisotropic parameter ‘Delta’as follows,

The above relation is chosen so that the regularity at the center is ensured and to obtain
relativistic solution similar to that obtained by R.Tikekar et al [20] for the field
equations (5)-(7) Using the transformation, eq. (10) can be written as

Where is a constant
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bBVariation of & in unit of 3*10^4/R^2 Mev/fm^3 with compactness factor M/b
for specific values of at the center and surface of the stars having different compactness
factor. Here ‘R’is expressed in Km.

From the above table it is clear that at the centre of the star parameter ‘ ’decreases with an
increase of ‘M/b’ for a given value of , which are displayed in first two rows. Which
shows that the core becomes more dense as the compactness increases, in view of the
equation of state considered here.

At the surface of the star also decreases with the increase of compactness factor. Which
are displayed in third row.
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1. X Ray Pulsar HER X-1 [21]
Mass M = 0.88 , where is the Solar mass
Radius b = 7.7Km. and the parameter ‘a’=6, Which leads to Compactness u = 0.1686 and
R= 22.8815Km.

Variations of parameter with
Variations of parameter ‘ ’ with radial distant
‘ ’ ( Km.) for different values of anisotropy
Parameter . Here , and .
Lines from top to bottom are for =

In isotropic case ( = 0), 143.05Mev/fm^3
and at the surface 93.4345Mev/fm^3.
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