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Introduction and Motivation

The analysis of very compact astrophysical objects has been a key issue in relativistic
astrophysics for the last few decades. ‘

The estimated masses and radii of many compact objects such as X-ray pulsar Her X-1,
X-ray burster 4U 1820-30, millisecond pulsar SAX J 1808.4-3658, X-ray sources 4U

1728-34, PSR 0943+10 and RX J185635-3754 are not ible with the d:
neutron star models.

A strange quark matter may be useful to understand the observed physical features of]
some of these compact objects [1,2,3.4,5].

The matter densities of these compact objects are normally above the nuclear matter]
density. It has both maximum mass and radius less than those for neutron stars, with
higher compactification factor (ratio of mass to radius).

It is physically realistic to consider an ultra-compact star with two different

inside [6], namely, the radial pressure and the tangential pressure incorporating the

Itis considered [7,8,9] that compact stars may be made up of quark matter which may
be formed in two different ways : i

(i) quark-hadron phase transition in the early universe, and
(ii) conversion of neutron star into strange star ones at ultrahigh densities.

The theories of strong interaction with quark bag model, strange quark matter may be
useful in order to obtain a relevant equation of state (EOS).

Here we assume that the quarks are mass!sss and non-interacting giving the quark]|
pressure 1

where p, is the quark energy density.

The total energy density
and the total pressure

p=p,+B
p=p,~B where B is Bag constant.

The equation of state (EOS) for the strange quark matter [10] is given by:
P3p-4——0)

In the MIT Bag model [11] and in the original version of fuzzy Bag model the non-
perterbative QCD vacuum is parameterized by a constant B in the Lagrangian density.

For these stars quark confinement is important which is described by the energy term
proportional to the volume[12] . ‘

In this model, the constituent quark matter is d to be mass less u, d quarks and
massive quarks and electrons. The quarks are considered to be degenerate Fermi gases,
which may exist only in a region of space with a vacuum energy density B (called the
Bag constant).

In this work, we have investigated the role of pressure anisotropy of a compact star|
relating it with the value of Bag parameter in the framework of Vaidy-Tikekar model
for super dense star [13,14]. ‘

In this approach the model of a super dense star is obtained by stipulating a law for
variation of density of its matter content which follows from prescribing a geometry|
characterized by two curvature parameters for the physical space of the conf

Physical Parameters

The physical paramelers of a general relativistic. star are given by

‘(—‘)‘*ﬁ(ﬁ ””””””” a3)

Egs. (8) and (12) with equations. (
the physical parameters exactly.

13) - (15) comprise a set of equations relevant for determining|

The total mass of a star of radi

M-

m
|

The Compactness factor ‘u” (!he ratio of mass to radius) is given by

b M (a-1)y°
Where +-% e e Y Eres R an
The ‘B’ may now be p (1), (13) and (14), which is
given by
B=dp-3p oo 8

Where ‘B’is in the unit of MeV/fm”3, obtained by scaling in

terms of a factor 310t [18], here ‘R’is a constant parameter [10].
¥

In the case of a compact star, we impose the following conditions:

1. At the boundary of the star the interior solution is matched with the Schwarzschild exterior|

solution, i.e.,

e'"(r:b):e"(»<:b):[1—Tj —————— (19)

o where [l

Now using equations. (19), (20) and (21) we determine the constants C and D

3. The pressure 5, -0 inside the star, which leads to an inequality, is given by .
0

3(a). SAX JI millisecond pulsar [16 20]

Mass M = 1.323 M, , where ¥, is the Solar mass

Radius b= 6.55Km. and the parameter ‘a’=6, which leads to Compactness u =
0.2979 and R= 10.1288Km.

In Isotropic case, 5~ 8.60342Mev/fim"3 and

At the surface 5= 163.533Mev/fm"3

Variations of parameter 5 with o
Variations of parameter ‘B’ with radial distant
v for different values of anisotropy parameter
Here ‘u”=0.2979 and ‘a’= 6. Lines from top to
bottom are fora =0, 0.02, 0.04, 0.06, 0.08, 0.1.

Physical Application
To study the effect of anisotropy of a compact star on the parameter ‘B’, we first use the eq. (19) t
determine ‘R’, which can be evaluated fora given values “a’, ‘M’and ‘b’

Once the constants C, D and the parameter ‘R’ is known, the value of ‘B’ can be evaluated
using eq. (22) for different values of anisotropy parameter

Thus ‘B’ can be studied as a function of ‘r” for different values of o. ‘B’ is also determined
from eq. (17) for a given L,:% and ‘a

3(b). Applying scaling properties to the above configuration with scaling factor = 0.65
Mass M = 0.85995 w, , where ¥, is the Solar mass
Radius b =4.2575Km. and the parameter ‘a’=6, which leads to Compactness u =
0.2979 and R= 6.58373Km.

In Isotropic case, 5= 20.3702Mev/fm"3 and

At the surface 5~ 387.06Mev/fm"3

which is a departure from the spherical geometry of a uniform density configuration.

The equation of state of matter content follows from the system of associated Einstein
field equations which in a number of specific cases is found to approximate to linear
EOS connecting pressure and density [12].

Einstein Fields Equation
The space time in the interior of a spherically symmetric,cold compact star in
equilibrium is described by , S I
ds® = - di* + ¢V + r[d0” +sin’ 0d>] - ~(2)
[Where u(r) and v(r) are the two unknown metric functions.

The interior matter content of the star is prescribed to be that of a fluid with

Numerical and Graphical result

We study the interior of a compact star in two distinguished regions
(i) near the center of the star and
(ii) away from the center up to the surface.

Three different cases we have studied.

Variations of parameter 5, with ¢
Variations of parameter ‘B’ with radial distant
1t for different values of anisotropy parameter
Here ‘u’=0.2979 and ‘a’ = 6. Lines from top to
bottom are fora. =0, 0.01, 0.02, 0.03, 0.04.

Mb 0.15 [ 0.18 | 0.20 | 0.24 | 0.26 | 0.28 | 0.30
B, (a=0) |2.1490( 1.907 | 1.719 |1.2460| 0.934 | 0.529 |-0.039
B, (e=0.3)| 2.665 | 2.566 | 2.487 | 2.289 | 2.157 | 1.987 | 1.757

B, 1.406 | 1.155 [1.0000]0.7200{0.5950| 0.480 |0.3750

pressures with the energy momentum tensor Ty = (=pspysprop) === =~ 3)
where p s the cnergy-density, p, is the radial pressure, p, s the tangential
pressure and  A=7. 7. is the measure of pressure anisotropy [13,15,16,17,18] in this
imodel, which depends on metric potential woand vir)

The Einstein field equation 1

Ry =5 8 R=8GT, ~= e 0]

'where R, isRiccitensorand Rr isthe Ricci scalar. The Einstein field equation
relates the metric parameters () and v(» of the space time with the dynamical
ariables of its physical content which reduces to the following system of three
equations :

P v o

[Where we have used 86 =1

The geometry of a more realistic star with variable matter density is expected to be
departure from 3-spherical geometry. The Vzudya Tikekar models are obtained by
prescribing[ 14,19]

where ‘a’and ‘R’ are two different a’ being the

1. X Ray Pulsar HER X-1 [21]
Mass M = 0.88 », , where . is the Solar mass
Radius b=7.7Km. and the parameter ‘a’=6, Which leads to  Compactness u = 0.1686 an
R=22.8815Km.

Variationof 5 & 5 inunitof 3*10"4/R"2 Mev/fm"3 with compactness factor M/b
for specific values of o at the center and surface of the stars having different compactness
factor. Here ‘R’ is expressed in Km.

From the above table it is clear that at the centre of the star parameter * 5’ decreases with an
increase of ‘M/b’ for a given value of o , which are displayed in first two rows. Which
shows that the core becomes more dense as the compactness increases, in view of the
equation of state considered here.

At the surface of the star 5, also decreases with the increase of compactness factor. Which
are displayed in third row.

Conclusion

* Physically viable relativistic models ofa compact star having anisotropic matter content
with strange-matier EOS p=x(o -4), can be obtained by following the procedure

Variations of parameter 8, with oL
Variations of parameter ‘B’ with radial distant
v’ (Km.) for different values of anisotropy
ameter o Here u=0.1686, and a = 6.
Lines from top to bottom are for ¢ =0, 0.1,
0.2,0.3,0.4.

143.05Mev/fm"3
93.4345Mev/fm"3.

In isotropic case (¢ =0), &=
and at the surface B=

land ‘R’ is expressed in Km. The geometry of the physlcal 3-space of the star is that of a
3-Pseudo spheroid and the parameter ‘a’ is related with the eccentricity of the 3-Pseudo’
spheroid.

In view of the field equation (5) this is equivalent to prescribing the law for variation o
imatter density at the centre of the star for the physical content of the star|

The variation of p is governed by two parameters ‘a’and ‘R’. The matter density has|

maximum value at the center from which it decreases radialy outward.
3a-1)

o= = ©

Equations (6) and (7) determine the pressures along radial and transverse directions

in terms of v() and these parameters at all points of the star.

If the nature of anisotropy is known these equations determine the metric variable ve),

Now using equations (6) and (7), ones obtains a second order differential equation

atar’)

(1-a+ar' ¥, —ax¥, +ata—1w -8
@D

L R—T/))
Where ¢ with xl—n;;:

For simplicity we choose the anisotropic parameter ‘Delta’as follows, -
0

[ The above relation is chosen so that the regularity at the center is ensured and to obtain
relativistic solution similar to that obtained by R.Tikekar et al [20] for the field
lequations (5)-(7) Using the transformation, eq. (10) canbe written as

Where 5. isa constant

)W, 2P, ~(B - )¥ =0~ any

Let us consider SAX J with two possible models of compactness [16,20]

2(a). SAX J1 millisecond pulsar [16,20]
Mass M = 1.435M, , where v, is the Solar mass
Radius b="7.07Km. and the parameter ‘a’=53.34, Which leads to Compactness
u= 0.2994 and R=41.2695Km.

In Isotropic case, s,- -17.9387Mev/fin"3 and

At the surface 5= 159.8817Mev/fim"3

Variations of parameter 5, with a
Variations of parameter ‘B’ with radial distant
1 for different values of anisotropy parameter
Here ‘u”=0.2979 and “a’ = 53.34. Lines from top to
bottom are for « =0, 0.1, 0.15, 0.202, 0.25, 0.3, 0.35

2(b). Applying scaling properties to the above configuration with scaling factor = 0.75
Mass M = 1.07625 M, , where . is the Solar mass
Radiusb=5.3025Km. and let the parameter ‘a’=20, which leads to same compactness
u=0.2994 and different value of parameter R=18.1622Km.

In Isotropic case, 5,- -28.1011Mev/fm"3 and

Atthe surface  5-  277.822Mev/fm"3

General Solution
The general solution of eq. (11) [20] is given below in two cases

Case-I : In this case the value of 5 and o are such that - /G5 an)
is positive and the solution is

¥ = ¢y Deosh (b )- zsinh (31} 0 b VG Dsinh (50 )- zcosh(pn ) J-12()

Case-I1 : In this case the valuc of 3 and a are such that
is positive and the solution is  +-/=rm)

w = cpJEDeos®n )~ zsin(@n) ) 0 b JE = Dsin(n ) zcos(@n )} 120)

Where C and D are two constants to be determined from boundary condition and =z = cosh()

Variations of parameter 5, with o
Variations of parameter ‘B’ with radial distant
1’ for different values of anisotropy parameter o
Here ‘u”=0.2994 and ‘a’ = 20. Lines from top to

d by Mukherjee etal [12].
*Inthis model parameter B acquired a radial dependence.

* Atthe centre of the star Parameter ‘B increases linearly with anisotropy parameter for
Given

) andsp ity paramet

* At the surface of the star there is practically no effect of anisotropy on the value of
parameter ‘B’.

*Forspecific configuration of the compact object, Parameter B, picks up negative value,
indicating the repulsive nature of core region for such configuration.

* Scaling properties also hold good for the model under consideration.
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