"Magnetar" or "Quarctar": Do \magnetars" really exist?

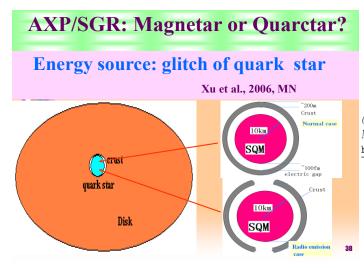
Qiao, G.J. ¹, Liu, X.W. ¹, Xu, R.X. ¹, Du, Y.J. ²³, and Han, J.L. ²

1. gjn@pku.edu.cn; xiongwliu@163.com; r.x.xu@pku.edu.cn, Peking University, 2. dyj@nao.cas.cn; hjl@nao.cas.cn, National Astronomical Observatories, China 3. dyj@nao.cas.cn, Center for Space Science and Applied Research, China

It is arguing that from both X-ray and radio observations shown that there are argued with "anti-magnetars" and a lot of observations are difficult to be understood in "magnetars" model.

Insted of of "magnetar" it is suggested as "Quarctar", that is a quark star with a crust/disk. In this model the persistent X-ray emission, burst lumi-nosity, spectrum of AXPs and SGRs can be understood. Both radio and X-ray emission from some AXPs also can be explained in this model. Most problems faced by the "magnetars" can also be overcame in the "Quarctar" model.

Magnetar: characteristic age & age of host SNR


Name	P(s)	$\dot{P}(s \cdot s^{-1})$	$\tau_c \left(\mathrm{yr} \right)$	$\tau_{host}(yr)$	Host
SGR 1806-20	7.46	10e-10	1.2e3	(3-5)e6	MSC (a)
SGR 1900+14	5.16	10e-10	0.8e3	(1-10)e6	SNR: CTB 109 (b)
1E 2259+586	7.0	4.84e-13	2.28e5	1.7e4	SNR: CTB 109 (c)

CCO: characteristic age different from age of host SNR

Name	P (ms)	\dot{P} (s·s ⁻¹)	$\tau_c (yr)$	$\tau_{host}(yr)$	Host
PSR J1852+0040	105	8.7e-18	192e6	$\sim 7e3$	Kes 75 (a)
1E 1207.4.5209	424	6.6e-17	>27e6	∼ 7e3	SNR PKS 1209.51/52 (b)
RX J0822-4300	112	<8.3e-15	>0.22e6	3.7e3	SNR Puppis A (c)

Table 1: high-B radio pulsars and anti-magnetar.

Name	P(s)	$P(s \cdot s^{-1})$	Age (yr)	$B_8(G)$	Note
PSR J1847-0130	6.7	1.3e-12	8.2e4	9.4e13	No X-ray ^a
PSR J1718-3718	3.3	1.5e-12	3.5e4	7.4e13	$\dot{E} = 1.6 \times 10^{33}$; Low X-ray ^b
PSR J1814-1733	4.0	7.4e-13	8.6e4	5.5e13	No X-ray ^c
RRAT J1819-1458	4.26	5.8e-13	0.1e6	5.0e13	$\dot{E} = 3.0 \times 10^{32} \text{d}$
PSR J1846-0258	0.324	7.1e-12	8.84e2	4.9e13	$\dot{E} = 8.3 \times 10^{36}$; $L_{\rm X}/\dot{E} = 5\%$; SNR Kes75; No radio ^e
PSR J1852+0040	0.105	8.68e-18	1.9e8	3.1e10	$L_X/\dot{E} = 17.7$; Anti-magnetar; No radio f

Compact stars in the QCD phase diagram II (CSQCD II)
May 20-24, 2009, KIAA at Peking University, Beijing - P. R. China
http://wega.bac.pku.edu.cn/rxxu/csqcd.htm

Do magnetars really exist?

Qiao G.J., 1 Xu R.X., 1 Du Y.J. 2 and Han J.L. 2