Radio Pulsars Glitches Detected in Southern

Meng Yu 有循^{序系},R. N. Manchester²,G. Hobbs²,S. Johnston²,V. M. Kaspif, M. Keith²,

- A. G. Lyne⁵, G. J. Qiao¹, V. Ravi^{6,3}, J. M. Sarkissian³, R. Shannon³, R. X. Xu¹
- I Department of Astronomy, School of Physics, Peking University
- 2 National Astronomical Observatories of China
- 3 CSIRO Astronomy & Space Science

COTTECT

- 4 Department of Physics, McGill University
- 5 Jodrell Bank Centre for Astrophysics, The Unversity of Manchester
- 6 School of Physics, Unversity of Melbourne

The earth

Table 1. Observing log.

(MHz)

96 x 3

Back-end

analogue filterbank

analogue filterbank

analogue filterbank

Contact: vela.yumeng@gmail.com

What is a Glitch?

litches are unexpected jumps of the spin rates of rotating neutron stars. One of the glitches occurred in the famous Vela pulsar B0833-45 was captured in February 1969 as the first discovery for such events. Pulsar spin can jump! Mmmm... Does this mean anything to neutron stars?

Fig. 1 CSIRO Parkes 64-m radio telescope. The greatest achievement of this antenna is that it transmitted the television signal of Apollo 11 to all over the world, rather than pulsars!(photo: David McClenaghan, CSIRO)

Integration/TOA

(min)

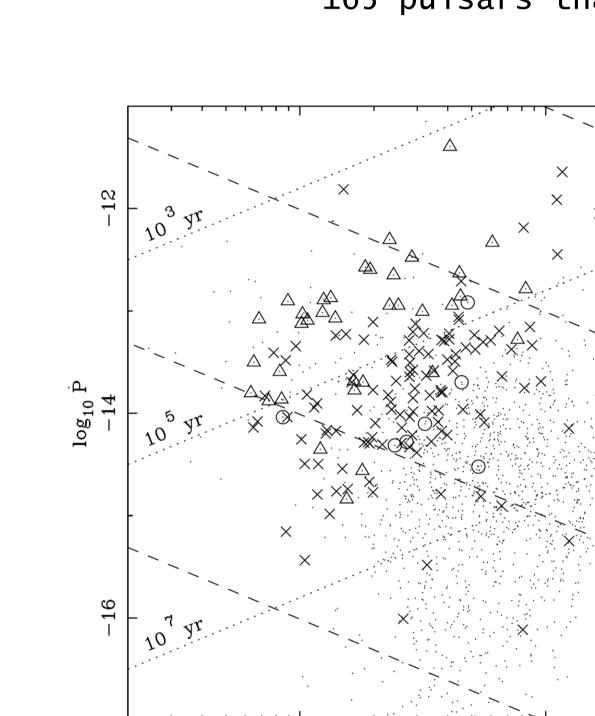
1 - 10

1 - 10

1 - 10

1 - 10

1 - 10


2 - 20

Cadence

(week)

The Observations

The dish (Fig. 1) —— CSIRO 64-m radio telescope located at Parkes, west NSW, Australia —— has been, from 1990 to 2011, working for a series of programmes carried out for monitoring the timing attributes for approximately 170 young pulsars. Data were collected in the 20-cm band, having a central frequency around 1400 MHz. During the 20 years, efforts have been made to upgrade the dish. Several front-ends and back-ends have been used in the observations. Table 1 tells you more... Fig. 2 is the period-period-derivative diagram showing 165 pulsars that are in our sample.

0.1

Results

ing our data.

Period (s)

Fig. 2 P-P diagram showing the 165 pulsars in the sample. For those where no glitch has been detected, a glitch was detected in this work and a glitch was detected prior to our data are indicated by crosses, triangles and circles, respectively.

How to identify a glitch?

The sun

1990 - 1994

1994 - 1997

1997 - 2001

2001 - 2007

2007 - 2011

Pulsar

the

Timing Routine

A glitch means a sudden jump in the pulse frequency, what do you expect to see in timing residuals? Yes!-The sudden earlier arrival of pulses! Glitches that increase the pulse frequency by one part in a million are

corrected to the times at the solar system Barycentre:

and space (Shapiro delay) etc. are removed.

Receiver

H-OH

multi-beam

multi-beam

multi-beam

with using the planetary ephemeris provided by JPL,

propagation delays brought by the motion of the earth

(Roemer delay) and the warps of time (Einstein delay)

actually very large. The frequency is changed a) PSR J0835-4510 $(\Delta \nu_g / \nu \sim 10^{-6})$ so much that you lose your counts for pulses soon after the glitch. Small glitches are not that strong such that you can clearly see the advanced-arrival of subsequent pulses (Fig. 3 shows the examples). Days after MJD 52700 b) PSR J0834-4159 $(\Delta \nu_{g}/\nu \sim 10^{-9})$

Fig. 3 Impact on timing residuals brought by glitches. Plot a) shows the MJD ~ 53193.09 large glitch suffered by the Vela pulsar; timing residuals relative to the pre-glitch solution become messy after the event. Plots b), c) and d) are for the MJD \sim 53415 small glitch in PSR J0834-4159. Timing residuals referring to the pre-glitch model are shown in b). Plot c) further shows the residuals after fitting for the entire data span but without modelling the glitch. Seen a cusp? Plot d) shows you the measured evolution of the pulse frequency: YES! The frequency jumped!

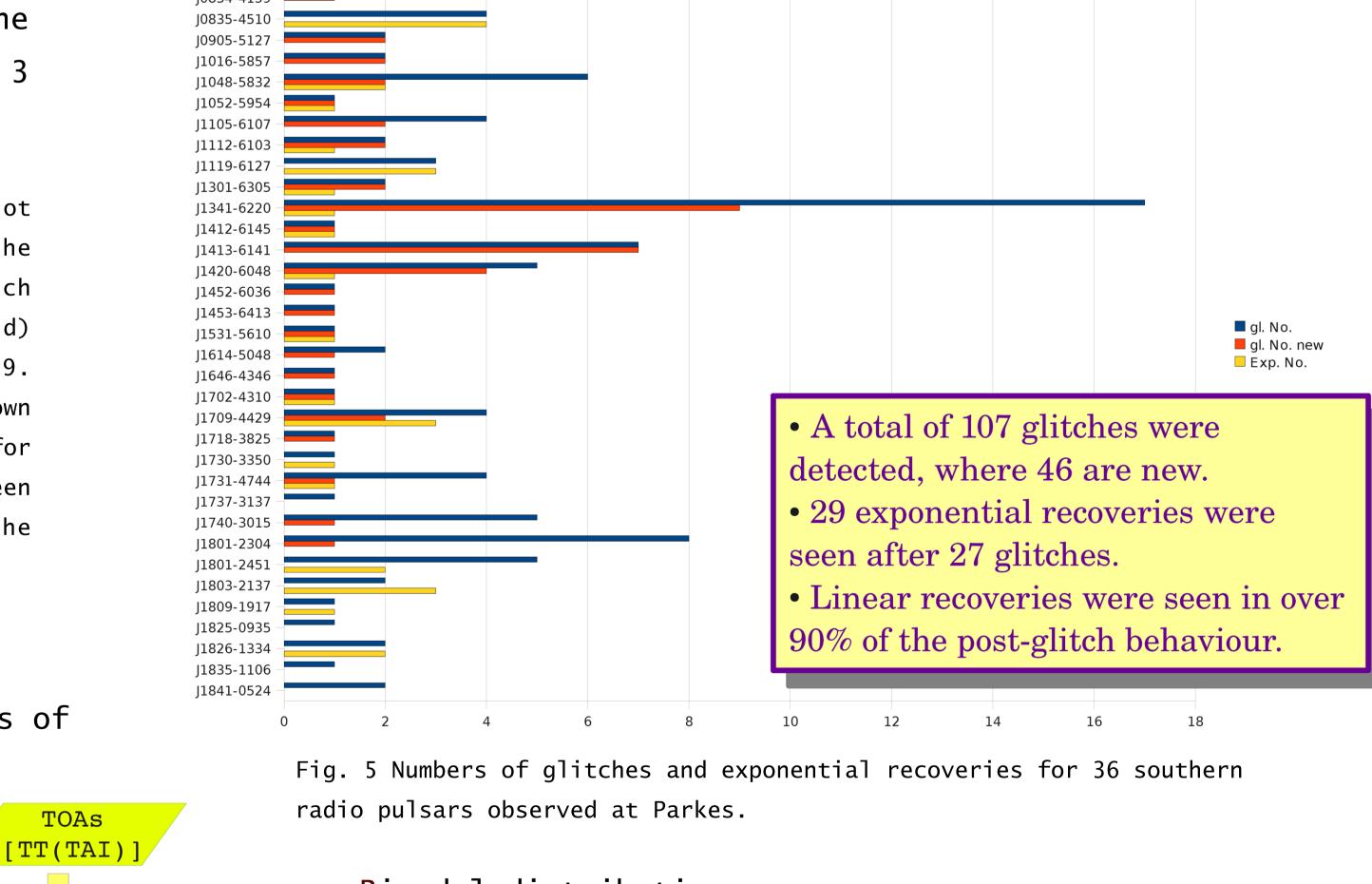
Data Reduction

PSRCHIVE

The flow chart (Fig. 4) shows the procedures of data reduction.

data

sum in time,


freq., pol

pulse profile

(stokes I)

coss-correlate

with a template

The bar chart below shows what we have found after process-

Bimodal distribution bimodal distribution, two peaks two mechanisms? a dip shaded bars: 46 new glitches

low detectability,

what is the intrinsic

Fig. 6 Histogram for glitch fractional sizes.

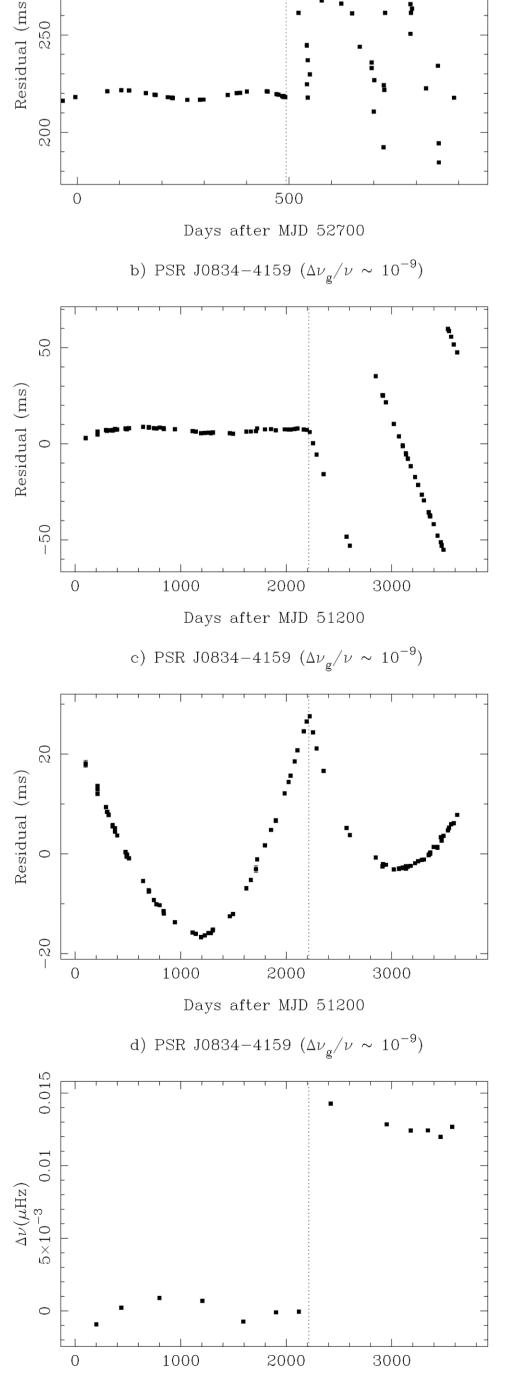
-6

blank bars: 348 glitches in

ATNF glitch database

 $\log \left[\Delta \nu_{\rm g}/\nu\right]$

Fig. 4 Data reduction routine. distribution?


fit for glitches

Residuals

[TCB]

solution

(phase-connected)

Days after MJD 51200